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§1. Introduction.

We study the generalization of the Lifshitz
formula® for the nonretarded van der Waals
interaction between two semi-infinite media

including non-local dielectric effects and

formula to calculate the van der Waals forces
between two metal half-spaces. From his
formula the net interaction energy between
one adatom and a semi-infinite solid can be
expressed at a moderate distance z from the

planar surface as

anisotropy. In 1955 Lifshitz? presented a V(z)=—Cs/23, (1)
where
Cs= 4177 S:da){[e(ia))—1]/[e(iw)+1]} a(io), (2)

¢(iw) is the dielectric constant of the solid
and a(iw) is the electric polarizability of the
adatom, both evaluated at pure imaginary
frequency. With the same approach Kihara
and Honda® generalized this formula to the
interaction of two anisotropic bodies. For a
solid surface such as basal plane graphite
with dielectric functions ¢, and ¢,, for electric
fields parallel and perpendicular to the basal
plane, the prescription is to replace ¢ in Eq.
(2) by &, where ¢ is defined by
g={e,,(iw)e (iw)} 12, (3)
Recently many authors have studied this
problem of van der waals interaction with
many different methods®~%.  Nevertheless
all these studies include only the local effects

of dielectric constant. J. Heinrichs® and D.

Chang et al? tried to expand the formula of
Lifshitz to have the
dispersion and showed non-local dispersion is

effects of spacial
very important. Their calculations are done,
however, in the case of hydrodynamical
treatment of electron gas. Here we evaluate
the van der Waals interaction energy between
two semi-infinite media using the expression
for the energy in terms of the shift of the
zero-point energy of their surface modes®.
We also present the results of numerical
calculations for C; for some adatoms on
graphite basal plane with the values derived
from recent experiments?. To our regret
we can not estimate the effect of the non-
local effect of dielectric media for there is

still no experimental data of dielectric

* YBRERTRE



Bulletin of TokyoKasei Daigaku No. 18

constant of graphite with wave vector

dependence..

§ 2. Polarization forces between
two semi-infinite dielectric media
with non-local effects.

We first treat the case of isotropic media
with planar surfaces at 2z=+/[/2 and a
vacuum gap between them ; the modification
of the result for anisotropic media is stated
at the end. We neglect retardation effects.

For a medium of wave-vector (¥) and
frequency (@) dependent dielectric function
e(k, ®), we obtain the electric potential from

the Poisson equation :

$(r, )= (2m)*[dk[dw exp [i(k-r —0r)]

drp(k, @) /[K*e(k, @) ]-
The fourier component of the space and
time varying charge density o(r, )
is

ok, )= §dr§dtp(r, ¢) exp [i(k-r—wt)].

Let medium I lie to the left of the plane
2=—1/2 and let II lie to the right of the
plane z=+1/2. Then, following Ritchie
and Marusak,'® the potential in I for a
surface charge density p3,

o1(r, )=p3(z, y, )3 (z+[1/2]), €y
has a (partial) Fourier transform

61(k, 2, w)égdx dyjdt o1(r, t) exp [i(szz+yy—t)]
—=2("_db, exp [ikCe+[/2D 1050, @)/ Her ()] (5)

The 3-vector % has (z,y,2) components
(Kzy Ky, £2). There is a similar expression

for the electric potential ¢;r in region II. .

The allowed surface modes are determined
by connecting ¢; and ¢r; through a solution

@117 in the vacuum gap,

r11(k, 2, ©)=A(k, @)e*+ B(x, 0)e™%, k= k24 £ ]2

From the electrostatic boundary conditions

at the interfaces z=+1/2 we obtain

g(k, @)= (541 (e + 1) — (5= 1) (e —1)e2¢=0, (6)

where the surface dielectric functions &f ;; (#, ) are defined by

& 11Cr, 0)= {(x/m) | dle/Hoer, 1aCly @) (7

The zero point energy of the allowed surface

modes for given « is

Sn 4 Thon=(0/2) (1/251) § oIn g(r, 0)do,

where the contour integral ¢ encloses the
positive frequency roots of Eq. (6).

Then, with a sum over surface mode wave

vectors, the generalized Lifshitz formula for

the interaction energy per interface area is

U= (n/an)[;dej:xdx

-1

The surface dielectric functions in Eg. (7)

) e 8)

are functions of argument (, i), f ;;(x, i€).
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For a single adatom at distance ! from the
substrate I the usual limit-procedure!? is
performed on Eq. (8): we assume medium
II is dilute, of number density p and (local)
molecular polarizability a;; (). Then with
the Clausius-Mossotti equation

eu(k, ico) —1

err(h, tw)+1 (4r/3)par(io), (9)

applied at very low number density, we
expand Eq. (8) and have the generalization
of Eq. (2).
an adatom IT with substrate [ is

The energy of interaction of

E(D)=—0/m) | ds| pdret ar(i&[e5(r, ) —11/[e§(r, 0)+1]. (10)

In the case of local dispersion ; e(k, @) is
independent of k£, this reduces to the well
known Lifshitz formula of Eq (1).

§3. Van der Waals forces between
two anisotropic semi-infinite media.

Here we want to obtain a formula of van

der Waals forces with the anisotropic effects.

For the generalization of the results of §2
to anisotropic media we consider the same
geometry as before and assume the axes of
that coordinate system coinside with the
principal axes of the dielectric tensor. The
Fourier transform of the generalized Poisson

equation satisfy

{EI(k’ w)k;_l_s?!(k: w)k5 +€z(k, w)kf,} ¢(k: 0)) =47fp(k, (U),

and the electric potential is

ok, @) -exp [i(k-r—wt)]

_ A4
é(r,t)= Wj dakjdw
For an explicit result, we consider the

special case er;=¢,=¢, and e,=¢,, as for

Ex(lf, (U)ICi—FEy(/C, w)kf,—l-ez(k, Cl))kf; ’

Then the definition of
the surface dielectric function is

basal-plane graphite.

e5(r, @)= {(5/m)|"_dhs [Ke.(k, @)+Rie, (k)] 1 an

o

Using the same method as in §2 we can

obtain the following equation

(hI(’f) (l)) 'ef('cx 0))-[‘1)(’2[[(/5, (0)6}?1(16, (D)-f— 1)
— (ha(k, @)e} (5, ©)~1)(h11(k, ©)ef;(k, @) —1)e~2d=0. a2z

Here we introduced the limit-equations for
function A; and A;; (defined at 2=—1, and

by, @)=(x) lim

+1, respectively).

D |7 akeke:

(zt=-1) /(24 1) ®

. exp [ik(z+D]/ {kz+x2<:—;><1e, o)} 13)

If the ratios ¢,/¢,, are finite in the limit ||
—co, the functions k; and A;r are equal to
(6), (8), and (10) hold with
Eq. (11) for the surface dielectric function.

one and Eqgs.

If the ratio ¢,/¢,, is not finite in the limit
|kz|—o0, the function % may differ from one ;
in that case the product &5 formed from Eqgs.
(11) and (13) replaces &5 in Eqs. (6), (8)
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and (10).

In quite the same way we can get a result

U(z)=8% [* e[ rdr1n [1

When we use the formula of Clausius
Mossotti, we get the formula of interaction

for the interaction energy as follows for the

anisotropic non-local dispersion substrates.

_ (eSr—1)(hneS1—1) .,
(hIESI+1)<hIIESII+1>e ’ J D

energy for one adatom on a substrate.

Eey=L [ e[ wdeers BT it as)

2r  dz
It is very easy to see that this is same to the

equation of Kihara in the local dispersion

case.

§4. The calculation of interaction
coeflicients from optical data on basal
plane graphite.

We calculated coefficients Cs for H,, Ne,

A,, K, and X, on basal plane graphite. For

graphite we used ¢, data of Taft and

#(p, L)={| &~ (ALY [0*+4L7]| /[o*+ 4L7]20%| Cs,— (p*=+4L?)*Cs,

hSreSr+1
Philipp!® and ¢,, data of Tosatti and
Bassani!®. We obtained values for ¢(io) for
the absorptive part of the dielectric function
We used

polarizability function e(i®) constructed with

with a Kramers-Kronig relation.

the bounding approximation summarized by
Tang et al.'> In table we also list Cs; and
Csz which occur in the interaction between
adatoms at lateral separation p and height

L above an effective surface plane.®

(16)

Co =32 [*[a(io) P {Le(iw)—1]/[s(im) +1]} do,

Cso=-3 [ TaCio) T {e(iw) 11/ [eCiw)+1]} *do.

g
Cs Cs, Cs,
H., 0. 043 0.57 0.31
N. 0. 086 2.2 1.2
Ar 0.30 30. 18.
K, 0.43 63. 38.
Xe 0.61 142. 89.

Table. Dispersion forces on basal plane

graphite. Values in atomic units.?
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