曲げ剛さの異方性が大きい布のドレープ性

山田 民子 (平成11年9月21日受理)

Drapability of Fabrics Having Highly Anisotropic Flexural Rigidity

Tamiko YAMADA (Received on September 21, 1999)

1. 緒 言

着用した状態においてフレアースカートが作り出す形 態は、スカートの設計上の因子及び着用者の体形に大き く依存する.

また,これらの因子に加えて布地の材料特性としての ドレープ性も大きく関係し,ドレープが描くシルエット によって美しさが定まる.

ドレープの形態は、ドレープのノードと波高によって、 計量化されるが、これらの形態因子は、布地の力学的因 子として計測される剛軟性と関連させて解析される.

筆者は、フレアースカートのフレアー効果を明らかに するために、たて糸方向とよこ糸方向とで曲げ剛さの異 方性が比較的小さい布地について、ドレープ性と曲げ剛 さの関係を検討した¹⁾

本報では,曲げ剛さの異方性が比較的大きい布地を用い て,ドレープ性と曲げ剛さの検討を行った.

2. 実験方法

2•1 試料

前報では、布地の剛軟性を表す尺度として、短冊状の 試験片について測定した曲げ剛さEIと重量Wの比EI/ Wとして表した係数に着目し、この係数の値がたて糸方 向とよこ糸方向とで20%以内の差にある布地について、 ドレープ性を検討した。

本報では、たて糸方向とよこ糸方向とで、係数EI/ Wが20%よりも大きな差を持つ布地について検討した.

素材,重量,曲げ剛さが広い範囲で異なる市販の織物 から,たて糸方向,よこ糸方向とで係数EI/Wの差が

服飾美術科 被服構成学研究室

20%以上の値を示した9種類を選んで試料とした.これ ら試料の諸元を表1に示す.

2·2 測定

1)曲げ剛さ

曲げ剛さの測定はJIS L1096の曲げ試験B法に採 用されているスライド型試験機を用いた.試験機の概要 を図1に示す.

まず試験機本体と移動台の上面が一致するようにし, 試験片を本体の境界から移動台に4cm突き出るように置 く.本報では,突き出した長さを試験片の長さと呼び, 記号しで表す.

次いで移動台を降下させ、試験片の自由端が移動台か

	Sample		Welshe	Flexural rigidity, EI			EI/W			KRE Trian		li⊒ →	
NO	Waterial	Weave	(g/cm)	Warp (g∙cm)	Weft (g∙cm)	Nean (g∙cm)	Warp (cm)	₩eft (cn/)	Mean (cm²)	Dlff. (%)	Warp	Weft) / / C
А	Cotton (100	6) Plain weave	0.013	0.49	0. 20	0.345	37.64	15.10	26.37	83. 6	21.7	21.0	36.23
в	Cotton (100	6) Plain weave	0.011	0.20	0.05	0.125	17.85	·4. 53	11.19	119.0	27.7	26. 2	24.87
С	Silk (100	6) Plain weave	0.015	0.54	0.34	0. 440	35.87	22.85	29.36	44.3	36. 5	22. 0	31.69
D	Wool (100	6) Plain weave	0.014	0.09	0.07	0.080	6.17	4.65	5.41	28.1	20.7	18.3	32.90
E	Cotton (100	() Twill weave	0.023	1.17	0.09	0.630	50.99	3. 76	27.38	172.5	26. 5	19.0	54.26
F	Cotton (100	6) Rib weave	0.020	0.68	0.05	0.365	34. 23	2. 64	18.44	182. 3	51.0	15.4	79.99
G	Polyester (59 Rayon (25 Acetate (16	6) Plain weave 6) 6)	0.018	0.15	0.10	0. 125	8. 53	5. 48	7.01	47.2	15.8	14.0	50.68
н	Polyester (75 Bast fiber (25	6) Plain weave 6)	0.013	0.32	0.15	0. 235	24.49	11. 34	17.92	73. 4	19.0	16.4	41.26
I	Wool (100	6) Plain weave	0.016	0.25	0.09	0.17	13.23	5.00	9. 13	90.4	20.6	24.8	46. 73

表1 試料の諸元

ら離れる時のたわみを測る.

測定は、たて糸方向、よこ糸方向5枚の試験片表裏に ついて行い、これらの測定値の平均値を持って試料のた わみ δ とした.

曲げ剛さEIは、材料力学において比較的たわみの小 さい範囲について知られている次式を適用して求めた.

 $E I = W L^4 / 8 \delta$ (gf · cm)

ここで、Wは試験片の単位面積当たりの重量(gh.cm)である.

2) ドレープ

ドレープの測定は直径25.4 cm 及び30.5 cm に裁断した 2 種類の円形試験片について行った.

本報では、円形試験片を直径12.7cmのターンテー ブルに支持して垂下させた時のドレープを解析するため にエンコーダを応用したドレープトレーサを試作して測 定を行った.

ターンテーブルに置いた試験片を2°ずつ回転させ、 試験片の射影先端の座標(計180点)を測定した。

ターンテーブルを2°回転させた時のテーブル外周の 円弧とこれらの回転角で求めた射影先端の座標によって 囲まれる射影が台形であるとみなして,面積を算出した. この様にして得た微小面積を射影の全周に渡って積算し て,射影面積を求めた.

ドレープの形を表す因子としての垂下角は、ターンテー ブル端部と円形試料の先端とを結ぶ線がターンテーブル の水平面となす角と定義する. この垂下角を試験片の回 転角2°おきに測定し, それらの平均値 θをもって試料 の垂下角とした.

3. 実験結果と考察

3・1 たわみ曲線

短冊型試験片の曲げ試験において,試験片の長さに沿っ た各部のたわみを測定して得たたわみ曲線を図2-1, 図2-2,図2-3に示す.試験片端部のたわみが大き いほど曲げ剛さは小さいが,係数EI/Wも小さな値と なる.また,いずれの試料においてもよこ糸方向の方が たて糸方向よりもたわみが大きく,したがって曲げ剛さ は小さい傾向にある.

3・2 ドレープ

図3及び図4に直径25.4 cm (10 inch)及び30.5 cm (12 inch)の円形試験片について得た代表的なドレープ 形状を示す.ドレープのノード数は,10回の測定の平均 値である.

試料C, D, Gは, たて糸方向, よこ糸方向の曲げ剛 さEIの異方性が小さいが, これらの試料ではドレープ 射影の形状が比較的均一であった. これに対して曲げ剛 さの異方性が大きい試料では, ドレープが不均一な形を とることが観察された.

直径30.5 cmの試験片は直径25.4 cmの場合よりもドレー

.

図2-1 サンプルのたわみ曲線

図2-2 サンプルのたわみ曲線

図2-3 サンプルのたわみ曲線

プの波高が大きい. 言い換えれば丈の長い試料ほど, 波 高は大きくなる傾向にある. また曲げ剛さの異方性が大 きい試料は, 波高が大きくなる.

3・3 曲げ剛さとドレープの関係

各試料について得た係数EI/W、ドレープ面積、平 均垂下角 θ を表2に示す。一般に係数EI/Wの値が小 さい試料ほど垂下角が大きく、ドレープ面積は小さい。

ドレープ面積と垂下角との間には、図5に示すように 直線的関係が認められる。両者の関係は、試験片の直径 によって大きくは変わらないと見られる。

表2 サンプルにおけるEI/W, Drepe Area, θ の関係

Sampl	с	EI/W	Drape	0		
Dia.(cm) No.		(cm)	(cm)	(deg.)		
25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	A B C D E F G H I	26. 37 11. 19 29. 36 5. 41 27. 38 18. 44 7. 01 17. 92 9. 13	413.00 368.31 382.26 295.10 373.37 322.45 290.33 337.19 287.09	31.03 43.28 40.36 57.94 41.35 51.85 58.73 49.17 59.37		
30. 48 30. 48 30. 48 30. 48 30. 48 30. 48 30. 48 30. 48 30. 48 30. 48	A B C D E F G H I	26. 37 11. 19 29. 36 5. 41 27. 38 18. 44 7. 01 17. 92 9. 13	479.97 460.70 431.40 289.45 475.14 359.23 283.38 385.96 301.50	24. 21 31. 73 30. 61 58. 34 24. 04 44. 41 59. 20 57. 59 67. 45		

たて糸方向とよこ糸方向とで曲げ剛さの異方性が小さい試料では、ドレープ面積と $^{3}\sqrt{\text{EI}/W}$ の間に、直線的な関係が認められた¹⁾.

本報で用いた異方性の大きい試料では、 図6 に示す ように $\sqrt[3]{E1/W}$ が大きいほどドレープ面積は大きく なる傾向にある.しかし、試料によってドレープ面積と $\sqrt[3]{E1/W}$ の関係は、比較的広い範囲に分布することが 分かる.

4. まとめ

たて糸方向,よこ糸方向のEI/W値の比が28%~ 180%の範囲にわたる9種の試料について,曲げ剛さの 測定及び試作ドレープトレーサを用いたドレープの測定 を行った.その結果

1) 剛軟度大の布地では、ドレープの波高が大きく、 素材特性の影響が大きいこと、及び直径の大きいものの 方が波高が大きいことがわかった。自重による影響が大 きいと考えられる。試料の大きさによるノード数の変化 は見られなかった。

2)ドレープ面積と平均垂下角との間に直線的な関係 が認められた。

3) ノード数は、同一試料でもある範囲以内で、様々 に変化していた、ノード形態は、試料によって美しい対 称性を示すものがあるが、いびつな形態を示すものがあ り、複雑な変化をする.

今後の課題として,試料片の大きさを変化させる等, 本実験の方法を拡張し,引き続きフレアースカートのフ レアー効果について検討することが必要である. 山田 民子

(154)

文 献

- 1)山田民子,中里喜子,赤見仁,徐廷権;繊消誌, 36,495(1994)
- 2) 中山晃, 稲垣勝彦; 繊学誌, 40, T-44(1984)