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The single-band Hubbard Hamiltonian is examined in the limit of intra-
atomic Coulomb interaction much less than bandwidth. We make use of the
well-known temperature Green’s function method and the final estimation is
performed only in the zero temperature limit. The purpose of this paper is to
investigate the effect of electron correlation on the antiferromagnetic ground state
of half-filled narrow band systems. We show that even in the weak correlation
limit antiferromagnetic spin wave can be excited and it seems that the ground
state is in the antiferromagnetic phase.

§ 1. Introduction

The properties of narrow band electron systems have been investigated in
the last decade. It is because the magnetic and transport phenomena of the system
are very different from the usual band theory. :

To treat the narrow band electron systems, we consider the well-known
Hubbard Hamiltonianl), '

H=> tijckcis+ U it Miy,
;7 ] Cis “Is iZnT’nn (1.1)



Bulletin of the Tokyo College of Domestic Science No. 16

which has received much attention in solid-state community for its importance
to many phase transition phenomena. Until now many investigations were given

to the Hamiltonian and we want the reader to consult the other papers23)45),
In the £q. (1.1) nis equals to ¢jscis (cis is the annihilation operator for a s-spin
electron in a Wannier state on site {), I is the hopping term to nearest neighbors
and U is the intra-atomic Coulomb interaction: parameter. It is well-known that
this system has an antiferromagnetic ground state in the half-filled band strong
correlation limit U>>16)7). In the U># limit electron localize at every lattice site
and they interact each other by the effect of virtual transfer and single band breaks
into two bands separated by a gap and the system show the antiferromagnetic
and insulating metal. So it can be readily known that this system can be described
by the Heisenberg Hamiltonian with antiferromagnetic coupling. The outhor
investigated the strong correlation system in the previous paper® and the many
other people examined in this limit. On the other hand, however, the weak cor-
relation system is not still so clear.

Recently Kubo er al9 investigated this weakly correlation system. They used
the variational method and concluded that the ground state of half-filled band
seems to be antiferromagnetic in the weak correlation limit. If the system is in
the antiferromagnetic state, there must be spin-wave excitation. This indicate that
it is necessary to consider all order of diagrams to examine the correlation effect
even in the weakly correlated limit.

A brief outline of this paper follows. In Sec. 2, after definition of our nota-
tions, we derive the results of Hartree-Fock approximation. Then we consider
the spin correlation function in the ladder approximation. In Sec. 3 we show that
there are spin wave excitations even in the weak correlation limit. It seems that
the ground state of half-filled band is antiferromagnetic in the limit, and the spin
wave excitations are very important to consider many transport phenomena for
real metals and transition metal oxides.

§ 2. Hubbard model Hamiltonian.

As we have mentioned in the previous section, we consider the Hubbard
Hamiltonian (1.1) for the case of the weak correlation. To treat the Hamiltonian
we describe our notations which we used in the previous paper®. We consider
a half-filled band system. As is usually done in the anti-ferromagnetic system,
we assume two sublattices A and B which are doubly periodic in the crystal lattice.
We transform the creation and annihilation operators of the A and B sublattices
into momentum representation and the Hamiltonian can be written as follows
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H=H" ,UN:H0+Hinl,
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Hint= N/ZZﬂZp (amarqramaxz +41+bmbﬁ ‘1rbm by +a )

~ 521 —somd + 1+ so)nf. (2.1)

Here we divided the Hamiltonian into the Hartree-Fock part Ho and the remain-
ing interaction part Hj;:. We considered that the chemical potential is equal to
U/2 as we are dealing with the half-filled band. In this equation &g is the energy
of the Bloch state g, ns is the number operator, ¢ is the sublattice magnetization
and s is the spin index which takes +1 or —1 depending on up or down electron
spin. We apply the finite temperature Green’s function method. As well-known
the single-particle Green’s function is denoted by

Gfr],s( k .T) =T ZI Gfp’s(k )e"iwn?.'

n

=—T,(Tt e PH&s (1) nks(0))/Tre FH, (2.2)

where £ and 7 are the annihilation operators in the Heisenberg representation
and k denotes the four momentum (k, iw,), where

wn=(2n+1) 7T n : integer.

The formula for the sublattice magnetization ¢ is

o= N/ZTZ (Gaaﬂk) Caa.l(k)). (2.3)
The lowest order Green’s function G°can be easily calculated®
. SoU
. 1Wn — 2
Gaa.s(k’)" (iwn)z_Eg
iws, T+ SaU gU
L (L
o — O — €k
Gab.s(k> Gba,s(k ) (ia)n)z-E/% (2.4)
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where Er= \2 ) + &t

From Eq. (2.3) the self-consistent sublattice magnetization ¢’ in the Hartree-Fock
approximation is

=§7z5 35, (= E) ~H(Eq)), (25)

where f(Fq) is the well-known Fermi distribution function. After a easy calculation
the sublattice magnetization at zero temperature oo is

o) =~ [_>/22/e -z for 1 dimension,

NEAY |
o \ 2 ) s (l)e_z}w for 2 dimention square lattice,

u/2\2
3

8t (%) PR for 3 dimention b.c.c. lattice.

Oo =~— 7 F—e " 1ua\z) .
[} U/Z 2\2 (2 6)

To discuss the correlation effect we must consider the hlgher order diagrams.
For this purpose we examine the two-particle Green’s function 8

(n,r) =2 <Te(&-g1(0)E1(T) 7 L (0) 7 p—g 1(0)) >
T l- b. p
and use the perturbation theory. Usmg the Bloch Dommlcls theorem x is written
in the lowest order approximation as

XZ”(Q):—T%] Gg, (P4 )G?;s,l(p)' (2.7)

In the ladder approximation the graph of X involves X° as illustrated by
Fig 1

T
Fig. 1 The ladder diagrams leading to spin correlation function X

— 4 —
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_1( U o ar) 1 U o (g)ee ()
X?T(q) - D [X;Taai(q) ( 1 N/ZX??(q) ) + N/szaf( Q)Xf%(Q)]

20 =3 (o) (1 j\l,J/Zxaa(q) ) + N/bea(q)x b<q>]

xabm:xba(q):%xgb(q) (2.8)
T T N

where p= (1= 1200 ) (1=z13(0) ) = (25 ) s Dx3(0). (29)

The dispersion relation can be found if we estimate the denommator D.

83 Antiferromagnetic spin-wave excitatien.
In this section we want to calculate the spin-wave correlation function
at zero temperature. From Egs. (2.5), (2.7) and (2.9), the denominator D is

wooU ([ aU ) z
DY Z[ Ep+Ep—q 2 ( 2 E"E"_q]
YT N/2 zE,, 2E;,Ep_:q *—(Ep+Ep-q)?
wil ( oo U )2_
Y (LIS T TS R N W N i
"N/2YN2E, U ErEry o’ —(Ep+ Ep-0)®

u Ep+qu €pep—g ‘]2 (3.1)
N/2 2EpEp—q | *—(Ep+Ep)°

We estimate this in the limit ¢=0,w=0, and—~0 The detailed calculation is
found in Appendix 1. We obtain the result,

__U 1 20 201 el
ST ——

where

o mt(aU)? U )2
‘= 2U <1 7t

‘in the case of I"dimension,

_ U 27t
Dz_nzt(aéU)z log aoU —w+cz(1 cos qx°005qy)]
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where
ZZM —127Z2t( _ U 27T2t)2
in the case of 2 dimension
square lattice,
= Y 2%
D= B log? o U — &?+c3(1—cos?, *cos?y, 'coszqz)]
where
g _t(cb U)’ —2271315( B 2t )
c3 U log 1 27r3t log 7

in the case of 3 dimension b.c.c. lattice.
3.2)
These equations show that there is spin-wave excitation at zero temperature for
very small interaction term of U.
It is not difficult to calculate the sublattice spin correlation functions from
the Egs. (2.8) and (3.1) when ¢ and w are very small.

N/ZE_—_ U) N/ZZE,,]

=Xo6=—Xab (3.3)

11 11
These equatlons lead to

X’r"f N/Z[ 2U 27zt]

for 1 dimensional case,

N/2 1 224
oo = [ 25U 222t °8 U

for 2 dimensional square lattice case.

Xaa= N/Z[ 2U 4713:: g’ 2”%]

for 3 dimensional b.c.c. lattice case.
(3.4)
Also we can calculate the expectation value of the interacting Hamiltonian
by the formula8)

Hint)u'=— N/ZTZ (xaa(q)+xbb(q)) (3.5)
q=0

— 6 —
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R 2 2 alnD((I, wn)
g0

When we use the energy theorem for the free-energy

(3.6)

v d
F= f (Hint>U’ ,

we can derive the free energy, although it needs a little tedious calculations to
estimate the value of free-energy. It is not so difficult to show the spin wave
excitation is very important for these calculations. We represent only the result
of the calculation of ¢ Hj; ) in the Appendix 2.

Appendix 1: Calculation of Eq. (3.2).

In this section we present the details of the calculation leading to Egq.
(3.2). From Eq. (3.1) it is clear that D (¢ = 0, w= 0) =
If we expand D for small w when ¢=0,

D(q=o,w%o)=NU/—2— w? ';31 A. (A.1)

Here

) Ep (A.2)

In the same way for small g at w=0,

D(q=o, w=o)=(-NU?) §(2N/2 (%U) A) —Q2),(A3)

where
Q=coq g for 1 dimension,

Q=cog g¢x°cos qy for 2 dimension square lattice,

Q=cos ¢x°*COS ¢y *COS (x. for 3 dimension b.c.c. lattice.
Thus for small ¢ and w,

—z gt () 5 (- (%)) a-en. 49

If we calculate A of Eq. (A.2) using the approximation sin g~3, we get the result
of Eq. (3.2).

Appendix 2: The result of calculation of <Hjy;> .

If we take into account only the effect of spin wave excitations, it is straight-
forward to calculate the value of (Hy;> of Eq. (3.5).

—_ 7 —
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. N /2x U 1 fn/z dg
Hinty=—N b
Hinty=—-= U 2 n/2do (1—cos?q)”?

E sinh(Bc1(1—cos?%q)1/?)
—1+cosh(fe1(1—cos?q)'72) J

‘ ' N y 1 dim.
... N [/ 27%1 ol 1 f” 2 dgxd gy
Hint>= 2 (222t 2 (n/2)%) o (1—cos?gx-cos?qy)l’?

U IOg \_O_g‘U"" 3 }

[ sinh(fc2(1 —cos29x*cos?qy)1/2)
—1+cosh(Bc2(1—cos?gr-cos?gy)!’?)
2 dim.

Hinpy— — N 475t U 1 /n/z d9xdgrd gz
Himbh=—75 2 (2798 2 (#/2)% o (1—cos?9xecos?dy+cos?qz)1/2
Vit (0

[ sinh(Bc3(1—cos?¢x+cos?qy *cos?qz)1/2)
—1+cosh(Bc3(1—cos?dzcos?qr+cos?(z)1/2]

im.
We only notice that the same integrations appear when we calculate the anti-
ferromagnetic Heisenberg model.
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