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Introduction

The other part of relation between chemical reaction
and statistical mechanics that could not describe on the
previous paper is reported on this paper. Moreover, one
part of relation between chemical reaction and quantum
mechanics is reported on this paper except the rest that
could not describe according to the space of this paper.

At first, in classical statistical mechanics, H—theorem
is treated with the Ehrenfest’s consideration that is
modified by the author against the irreversibity in
natural phenomenon. The relation among fine-grained
density, coarse-grained density, ensemble, and assembly
are considered as the following description. The quan-
tity H is defined by coarse-grained density. The relation
between H and time is considered. And the H that
decreases with time is proved.

At second, the basis of quantum mechanics is con-
sidered including the uncertainty principle of Heisen-
berg. And quantum mechanics is treated on the view-
point of wave mechanics. (1) Among probability W,
probability amplitude ¥ and its conjugate one ¥*, the
relation in them is considered. (2) Hermitian operator
against coordinate g¢;, momentum p;, and time ¢ is
considered. As the operator becomes linear Hermitian,
q; p; t is replaced with the operator. ¥ decides the
quantum mechanical state, the physical quantity in
classical mechanics is compared with the mean value
of the physical property in quantum mechanics. (3) The
time-like change of ¥ is given by Schrédinger’s equa-

tion. Hermitian operator in quantum mechanics cor-
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responds Hamilton function in classical mechanics. The
important property in quantum mechanics, Principle
of superposition, is considered.

The mean value by the determinaticn of the mechani-
cal quantity is considered according to eigenvalue. The
operator H that corresponds to energy of mass is con-
sidered. The continucity, uncontinucity, or mixed both
properties of eigenvalue and the eigenfunction are con-
sidered. And the two characteristic states (k, j) are
considered with the casesj =k, j Xk, j % k; F] = Fy
(degeration). And eigenfunction is normalized by an
usage of principle of superposition. Moreover, normal-
ized orthogonal function system is used in development
of function. So, probability amplitude is developed
with eigenfunction.

Then, energy is selected as eigenvalue against the con-
servative system.

Experimental and Results, Gedanken Experiment

H-—theorem in classical statistical mechanics: As the
hypothesis of a priori probability is approved as shown
on the previous paper,l) Gibbs” H-—theorem that

corresponds to the irreversibility in natural phenomenon
is obtained after several preparations as follows. Name-

ly, the necessity that the fine-grained density is sepa-
rated from the coarse-grained density according to the
method of Ehrenfest?) must be mentioned at first.

The exact state of ensemble is represented by density
pas shown on the previous paper.l)

N is assumed to point the total number of representa-
tive point of the ensemble. If p is normalized, so the
relation is represented by eq. (III-1).

5N
N =P@y v Ppt)8q, - pg (II-1)
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Namely, P shows the probability that the representative
point exists 1n the range of differential refinement of
the phase space. So, it is called as fine-grained density.

However, when the observation that becomes the
problem in statistical mechanics in regard to coordinate
and momentum of dynamical system is carried on, the
value cannot be decided exactly. Therefore, the pro-
bability that the representative point exists in the finite
size of region 2q, .- 2pf becomes the problem. So,
coarse-graind density P is defined by the following

equation, eq. (I1II-2).

. fA... fpaa, - dpf

P
8q,--opf

(111-2)
Here, the integration is carried on about the finite
region aq, - 4Pf. Namely, P is arithmetic mean of p
in the region 2q, - Apf, So, eq. (I1I-3) is given against
the probability that the representative point exists in
the region 2q, - apy.

%szA f/’d‘h de=PA‘11 e apg

(I11-3)
Moreover, if the phase space is divided into the same
size of region 2q, - a s, the relation is given by eq
(I11I-4) clearly.
EPkAql wapr=1 (111-4)
k
Here, Py is coarse-grained density against kth of the
region. Also, the sum is calculated about the total
region of such region k. On the other hand, if the sum
is rewritten as the form of integration about the total
phase space, eq. (III-5) is obtained.
[ [Pdq, ~dps=1 (111-5)
Then, quantity H is defined with an usage of coarse-
grained density p as follows.
H= %Pk IOng aq, - Apf (111-6)
Here, the sum is calculated about the total region of
the finite region k. Also, if the sum is rewritten as the

form of integration about the total phase space, eq.
(II1-7) is obtained.

H=[- [PlogPdq, - dpg (111-7)

Moreover, P, and resultant log P is constant in the
region aq, - apf respectively. Therefore, eq. (III-8) is
obtained according to eq. (I1I-3).

H=[[plogPdq, - dps (111-8)

Then, H that is defined as such process decreases with
time. Now, the proof that the quantity A is a function
of time requires several related equations to understand
easily.

(1) If p and P are positive quantities, Q = plog P
P log P — P+ P, is positive or zero. And, against a de-
fined random value of P, the following relations are
obtained

90 logp - logP (11-9)
ap /P
<g;2Q)P - % (111-10)

|

Here, as a’Q/a/f is always positive, when bQ/aP is
zero, namely 8Q/dp = 0, Q becomes minimal.
In the other case, it must be positive. Namely, eq.
(II1-11) is obtained as follows.
Q:,olog,o-/ologP—PwnP;O (I11-11)
(2) p in the neighborhood of the representative point
that moves according to the principle of density conser-
vation does not change with time. Consequently, the
integration, [ - f}, log pdq, - dpf, about the total
phase space that includes the all representative point
does not change with time.
Namely,

%f ~[plogpdq, - dpr=0 (I11-12)
The quantity H that corresponds to the representative
ensemble decreases with time. The unchangeable rela-
tion tries to be proved with usage of the two relations.

At first, the state of assembly at the time ¢, is ob-
served approximately. And the ensemble that represents

(24)



Keisuke HORITSU

the observed results is considered at the next time. This
representative ensemble is obtained with homogenous
distribution of the representative point in the region of
the phase space according to the hypothesis of a priori
probability. However, the phase space must correspond

equally to the observed result. As the determination

that becomes the problem in statistical mechanics is
approximate, it becomes that such region has a finite
magnitude. Moreover, P is equal to P in such region.
Consequently, if the value at time t, is pointed with a
supplementary note of suffix 1, it becomes that each
point existed in the finite region 2q, -- Apg moves
variously with passage of time. So, the relation is shown
as eq. (I1I-13).

Hy=[-[p,logp,dq, - dps (I11-13)

Also, the magnitude of the region does not change
according to the principle of volume conservation,2)
but the form of the region changes. E(év)= 0

In consequence, it becomes as follows; the represen-
tative point existed in the region 2q, -- Apf at the
beginning distributes into many regions that divides the

phase space at the latter time £,. And, in the region that

the form changes, distribution density is equal to the’

original value,/;l , according to d/J/dt = (. Therefore, ifa
finite region 2q, - Apf is considered in the corre-
spondence of the observation in statistical mechanics at
the latter time #,, it becomes that the fine-grained
density points the various different values. Generally,
P, is not equal to P,, p, ¥ P,. So, the relation is shown
as eq. (111-14).

H,= [ [p, logP, dq, - dps (111-14)
Here, suffix 2 points the value at the time £,.

From eq. (III-13) and eq. (III-14), eq. (III-15) is

obtained.

H, —H,=[[(p, logp, — p, logP,)dq, - dps

(I11-15)

And, according to eq. (I1I-12), eq. (III-16) is ob-
tained.

H —H,=[[(p,logp, - p, logP,)dq, - dps
(111-16)

Moreover, from 1 = f - f/)dqlmdpf and eq. (II1-5),
eq. (III-17) is obtained.

H, -H,= f"'f(/?z 103/), = p2 log P,
—pa+ P,)dq, - dpf
(11-17)

However, from eq. (III-11), eq. (III-18) is obtained.

palogp, —p, log P, —pa+ P, >0 (I11-18)
Consequently, the following relation is shown as eq.
(I11-19).

H, <H, (I11-19)

I\

Namely, H decreases with time. This result is called as
H —theorem of Gibbs.

Quantum mechanics: This contents is one part of the
preparation of deduction to quantum statistical mechan-
ics. According to the principle of uncertainty proposed
by Heisenberg, at a certain decided time, the position
a; and the conjugate momentum p; in a certain dynami-
cal system cannot be determined exactly at the same
time. Moreover, the energy of free particle £ and the
time ¢ that the particle passes through a certain bound-
ary cannot be determined together at the same time.
If this principle is expressed by other form, it is shown
by eq. (III-20) that expresses the relation between the
product of uncertainty A of these quantities and Planck
constant A.

Aq; ap;~h, AE At ~h (I111-20)
Namely, this principle points that the product is at a
degree of Planck constant 2. And, quantum mechanics is
based on this principle, and is constructed with it. Also,
the partial interpretation of quantum mechanics is tried
to be shown by one special form that places emphasis
on socalled wave mechanics.

The fundamental assumption against the description
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of dynamical system in quantum mechanics can be
expressed as follows;

(1) When the coordinate ¢q,, -, ar of dynamical
system that the degree of freedom is f exists in the range
of differential refinement shown at each time ¢, the
existence of the probability that the coordinate exists in
the range is considered as one important basic assump-
tion. And, the probability is expressed as the following
form.

Wi, gy t)dq,, - dpp
Then, W is positive quantity. Therefore, this relation

can be formed as the following expression.

W(QI’ T er )= ‘I’(qu Ty qf: t)‘l'*(qu "y (Zf, t)
(I11-21)

Here, ¥ is called as probability amplitude, and is gene-
rally complex function that ¥ itself cannot be observed.
¥* is the conjugate complex function. As ¥ has such a
physical meaning, at all position that variable g exists, it
is not only single-valued function but also is continuous

function.

The value that the square, ¥ ¥*_ of the absolute value is
integrated in a certain domain must be finite. And,
when W is integrated over the total region, the integ-

rated value becomes 1. Namely,

S [wiq, 0)dq, ~dps=[ - [W(q,t)¥*(q.0)dg, ~ dpp =1
(111-22)

(2) The linear Hermitian operator that is given as the
following expression corresponds to each physical
quantity in quantum mechanics, Then, some descrip-
tions about operator are shown to help understanding
the development of this theoretical treatment.

1) Operator: When a certain function u is changed
to the new function v of the same or the other variable
by the application of a certain constant rule A that is
called a operator, the process is called as operation.
And, it is expressed as the following eq. (III-23).

v=Au (111-23)

The sum of two operators, A + B is defined by the
following relation as shown' eq. (I11-24).

S=(A+B)u=Au+Bu (111-24)

Also, the product, AB is defined by the following
relation as shown eq. (II1-25).

Pu=ABu = A (Bu) (I11-25)
Namely, u is operated with I at the first step. Succes-
sively, the result is operated with A at the second step.

Generally, the product AB is different from the
product BA. If AB is equal to BA, A=B,it is said that
A is able to exchange with B each other.

2) Linear operator: The operator that has the follow-
ing character is said as linear. Also, it is said that the
character is equivalent to the definition. The charactor
is shown as eq. (II[-26). Namely,

Afc,u + c,u,) =c, Au, +c,Au, (111-26)
Here, ¢, and c, are real or imaginary random constant.

Therefore, the sum and the product that are made up
of two operators, A and B, are also linear. These re-
lations that are shown as eq. (III-27) can be induced
from the definition.

S=c,A+c,B, P=c,AB (111-27)

If it is assumed that u, and u, are two solutions of the
equation, Au = 0, the following relations, Au, = 0,
Au, = 0, are obtained. However, the equation includes
linear operator A.

Consequently, the relation is obtained from eq. (111-26),
and is shown as eq. (1II-28).

Aleyu, + cu,)=0 (111-28)
Namely, the linear combination of solution is the
solution.

3) Hermitian operator: When the function u,, u, of
the variable, x,,

', X, are integrated over the total
domain, the integral is shown as eq. (I111-29).

...ful(x,, e Xp)* Ay(X,, e, X )dXy, e, dx,,
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=f f Uy (%, xn)[A‘“x(xv w, Xn)]*dxn dxn

(111-29)

On the other hand, when its form is simplified, the
following expression as shown eq. (III-30) is possible
also.

Su,*Au,dx =fu, [Au, | *dx (I11-30)

Then, when the above described relation is set up, it
is said that A\ is Hermitian.

If A and B are two Hermitian operators that are used
to two functions, u, and u,, the sum, ¢, A + ¢, B, is also
clearly Hermitian from the definition.

And, according to eq. (I1I-30), the following relations
are induced as shown eq. (I1I-31) and eq. (III-32).

J(Au)*Bu,dx = fu, (BAu,) *dx (I11-31)

[ (Bu,)*Au,dx = fu,(ABu,) *dx (I11-32)
As the left side of eq. (III-31) is conjugated with the left
side of eq. (1II-32), the following relation is obtained as
shown eq. (HI-33).

Ju *ABu,dx = fu,(BAu,)*dx (111-33)
If A is able to change with B, it is understood that the
product, AB =BA, is Hermitian. In consequence, A
is Hermitian. Therefore, the sum that is made up of
these element is also Hermitian. The sum can be ex-
pressed as polynomial of A\.

On the other hand, in analogy with eq. (1II-33), when
the following equation, eq. (III-34), is added to eq.
(11I-33), the following relation is obtained. Namely,

Ju,*BAu,dx = fu,(ABu,)*dx (111-34)

Ju,*(AB+BA)u,dx = fu, [(AB+BA) 4, ] *dx
(I11-35)

That is to say, the symmetric sum of Hermitian operator
A and B is Hermitian.
4) Operator against physical quantity: The operators,

q; and h/2wi 3/8q;, of coordinate ¢; and momentum p;

that are operated against probability amplitude u (q)are
cleary linear together from the definition. Also, as the
q; = q; is real number, the following relation as shown
eq. (III-36) is valid.

Suy*q;u, dq = fu,(q;u,)*dq (111-36)
So, it is Hermitian. Moreover, against ]Pi=h/21ri a/aq,-
the following eq. (III-37) is valid.

h o
Joofu,* 2 dgq, - dqy

2‘717 8q;
h qi=+ee
=f... * 7 d e d
i) f W o e Gimteo 4 af
. h_duy*, ..
f fu2 2ni aqi dql dqf

_ hooou,\* )
=f fu, (2—1; E) dq - dqs

So, this is found to be Hermitian, Here, the case that the

(1I1-37)

last equation becomes a problem physically is the fol-
lowing case. Namely, it is the case of the u=0 at the
limit, g; = te. So, against this problem, the last equa-
tion can be obtained by an elimination of the first term
of the second equation.

If Q and PP are linear and Hermitian operators that are
the function of q and pPp respectively, IF is linear,
Hermitian in the following case. Namely, the case that
the operator IF of F(g,p)= Z cQP is made a symmetric
form as shown eq. (III-38).

F(q. p)=25¢(QP+PQ) (I11-38)

Then, a role of linear Hermitian is quantum mechanics
is considered again, as the author made some prepara-
tions ready for operator.

The operators against coordinate q;, momentum p;,
and time t are given respectively as shown eq. (I1I-39).

h 2

U=a;% Pi= 5———, t=1¢

Zai oq; ° (111-39)

X
And, one condition is considered as follows; the opera-
tor, IF(q,p, t) against a certain quantity F(q, p, t)that
is function of coordinate, momentum, and time is
obtained by the following operation. It is the operation
that variables q;, p;, t are replaced with operators qj;,
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P;, t to become linear, Hermitian. So, this relation is
shown as eq. (111-40).

h 9
F(4q, ]P,‘t):F(q, 27 Eé—’ 1

(111-40)

Then, the quantity F(q, p, t) that is function of
coordinate, momentum, time is related to a problem of
the physical quantity, spin, if one example related it is
selected.

However, there is a necessity of one kind of attention
on the operation mentioned above, Even if it is the
same dynamical quantity, there is the case that arrives at
the different operator by the method of expression.
But, fortunately, the operator can be decided usually
unqualifiedly in the case that orthogonal coordinate is
applied at conservative system.

Thus, the mean value of physical quantity F(q, p, t)at
a certain time 7, is given by the integral over the ob-
tained total coordinate region that operated the cor-
responding operator F on¥. And, the integral is shown
as eq. (I1I-40).

F(4,P.0=F@, 3o 21

) (111-40)
Then, as the IF is Hermitian, the following relation
shown as eq. (III-41) is obtained.
JY*Fwdg = ¥ (Fv)*dg (I11-41)
Namely, the mean value of F is equal to the conjugate
value. Consequently, the mean value is real number. It is
one of physical quantity must be Hermitian.

Thus, when the state is decided in classical mechanics,
the physical quantity is decided. However, when ¥ is
given in quantum mechanics, the mean value of physical
quantity is decided, namely, the quantum mechanical
state of the system is decided by the ¥, In consequence,
here, when the system exists at defined quantum
mechanical state, the mean value has the meaning that
is the mean value of the results of a series of determina-
tion.

Moreover, to determine two quantities together, the
condition that the corresponding operator is able to
exchange is necessary and sufficient condition at the
first step. However, the condition must be proved at the
second step.

(3) The time-like change of probability amplitude
¥ (g.t )is given by Schrédinger’s equation as shown eq.
(I11-42).

Hy+-— ¥

2ni ot (1142

Here, H is linear, Hermitian operator against Hamilto-
nian function in classical mechanics. As the two opera-
tors, 2—7]:{ 5% and H in this equation are linear together,
if ¥,(q,t) and ¥,(q,t) are solutions of this equation,
the linear combination, ¥(q,#)=c, ¥,(q,1) + ¢, ¥,(q,t)
is also solution. This result is important character of
quantum mechanics, is called as the principle of super-
position.

Here, quantum mechanical state is decided by giving
the ¥. And, after the boundary condition is decided as
the state at initial time 7z, becomes ¥(q,t,), if the
Schrédinger’s equation is solved under the decided
condition, the ¥ at later time is given.

Eigenvalue, characteristic value: The problem of
the mean value that is obtained by the determination of
a certain mechanical quantity F(g,p, t) mentioned above
is considered in conception of so-called “Eigenvalue”.

W(q,t,) at a certain defined time ¢, is expressed with
u(q). Now, if IFand F, are the corresponding operator
of F and a certain value respectively, the single-valued,
continuous finite function u(g) at the total coordinate
region that is satisfied to the boundary condition and
the following related equation shown as eq. (II1I-43)

exists only against the specific value, eigenvalue.

Fu(q)= Fu(q) (111-43)
This related equation becomes partial differential equa-
tion in many cases. When the quantity F is determined
exactly the value that is found is certainly one of
eigenvalue of the corresponding operator. For example,
the operator H against the energy of one simple particle
that exists in rectangular parallelopiped of three sides,
a, b, and c, is given by the following equation, eq.
(I11-44). And, the particle of mass m that is free from
external pressure exists in the box mentioned above.

1
H =5 (B2 +P)? +P,%) + V(x, y, 2)

2 2 2
- h_<L A

2
T 8nim\ax? ay2+§)z_2>+V(xyy,Z) (I11-44)
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Consequently, if F, is expressed with E| the eq. (111-43)
becomes the following equation, eq. (III-45).

92u

ax?

vlu, otu__ Sn'm

ay®  az? e

(E-Vu (111-45)
Here, the single-valued, continuous finite function, u(q)
satisfies this partial differential equation. Moreover, this
single-valued, continuous finite function, u(g), is single-
valued, continuous in regard to.the total coordinate
region that satisfies the condition. And the condition is
as follows; V is zero, 0, in the box, and is infinite, o,

outside of the box.

i ('_h_’

E=3m

2 2
sl ) (111-46)

a? b c?
Here, n,, n,, and n, are natural number respectively.
In consequence, if the energy of this particle is de-
termined, one of E of eq. (III-46) can be found.

Then, eigenvalue is uncontinuous in such case shown
by this example. Or there is the case that eigenvalue is
continuous also. Moreover, there is the mixed case that
eigenvalue is not only continuous but also unconti-
nuous.

Now, the eigenvalue of energy of conservative system
that has a constant volume is uncontinuous. The con-
servative system having a constant volume is objective
mainly in this consideration. Moreover, this definited
system is treated comparatively simply. Therefore, the
character of eigenfunction in the uncontinuous case is
considered and is treated theoretically. Also, the con-
tinuous case can be considered as a limit of the uncon-
tinuous case for the present.

Then, as two characteristic state are expressed with k&
and j, the following relations, eq. (III-47) and eq.
(111-48), are obtained according to eq. (I1I-43).

IFuk = Fk uk (111-47)

(Fu]-) ¥ = Fl-*ill-* (1I1-48)

After multiphing eq. (III-47) by uf* and also multiph-
ing eq. (Il-48) by uy, when the integral over the total
region of each variable is carried on, the following
relations as shown the following eq. (I1I-49) and eq.
(I1I-50) are obtained.

fuj*]Fukdq = kau]-* updq (111-49)

fuk(IFu]-) *dq = F}-*fuz*ukdq (I11-50)
Here, as F is Hermitian, the left sides of the both
equations are equal. Consequently, the relation as
shown eq. (I1I-51) is obtained.

(Fy — F*) fuj*up dg =0 (111-51)
From this eq. (III-51), the following important con-
clusions are obtained.

1) If j is equal to k, j=k, as fug* uy dq is positive real
number, the following relation, eq. (III-52) is obtained.

Fy, = F* (111-52)

It is found that eigenvalue is all real number.

2) Ifj is not equal to k, 7 %k, and if F] is not euqal to
Fp, at the same time, FI 5 Fp, the following relation, eq.
(III-53) is obtained.

Ju*ugdq =0 (II1-53)

The fact is said that eigenfunction against different
eingenvalue is orthogonal.

3) If j is not equal to %, j %k, and if F] is equal to
Fy, F] = F, eq, (1II-53) is not always valid. Namely, in
the case that the characteristic state degerates and two
and more eigenfunctions correspond to the same eigen-
value, eq. (III-53) is not always valid. However, the new
g pieces of eigenfunction that is orthogonal each other
can be made invariably from g pieces of different
eigenfunction by the linear combination according to
the principle of superposition. Consequently, the fol-
lowing relation shown as eq. (III-54) is valid in any
event. ’

Jui*updg =0 (I11-54)
Then, the any eigenvalue against the degenerated g
pieces of eigenfunction does not be expressed with Fy
to simplify the following treatment. Each one is ex-
pressed with Fy, Fj, -+ that affixes each separate suffix.

As the one that the eigenfunction multiplied by a

certain constant is also cleary eigenfunction according

(299



Theo. Treat. Chem. Reac. 3. Sta. Me. Quan. Me.

-

to the principle of superposition, the eigenfunction
is made to normalize after the constant is selected as
eq. (II1-55).
Jup*ugdg =1 (111-55)
When j is equal to k, j =k, if the ajk is defined as the
quantity that is 1, and, when j is not equal to k, j 5k
if the 6i x is defined as the quantity that is zero, eq.
(111-54) and eq. (III-56) are expressed with only one
equation shown as eq. (III-56).
fuj* uy dq = 5]" k (I11-56)
Generally, the arbitary function, f(g),that the finite

J17(g)1?dgq exists can be developed with an usage of
such normalized orthogonal function system. Con-

sequently, the probability amplitude W(q,t) is devel-
oped with usage of eigenfunction ug(q). Namely, this
relation is shown as eq. (I1I-57).

wv(g,t)= %ak(t)uk(q) (11-57)

Here, a;,(1)is a coefficient of development.

After the both sides of eq. (III-57) multiplied by
ug*(q), when the integral over the total region of vari-
able ¢ is carried on, ¢z (#) is given by the following
equation, eq. (I1I-58) from eq. (I1I-56).

ap ()= fup*(q) w(q,t)dgq (111-58)
It is found that g (t) is equivalent to ¥ (g, ) physically
in comparison with the both equations, eq. (III-57) and
eq. (III-58). Namely, the quantum mechanical state is
given by ak(t) also.

If the physical quantity is determained exactly as
mentioned above, one of eigenvalue can be found in-
variably, but, when a certain physical quantity about
the system existed in the same quantum system ¥(q,1),
is determined many times at the defined time, the
probabilities that the various eigenvalues are found is
trying to be considered to develope this theoretical

treatment.

As uy(q) is normalized orthogonal function system,
the nth power of mean value of the physical quantity F

is given by the following relations shown as the follow-
ing equation, eq. (I1I-59).
According to eq. (I11-40),

S w*(q,)F"¥(q,1)dq
=fIEal*(t)ul*(q)(%ak(t)lf""uk(q))dq
= Zap a0 f 1) (F)" w@)dg

= Zlicak*(t)ak(t) (Fk)n (I11-59)
As this equation is valid against arbitary integer, n, so
the probability, W(Fk,t), that Fy is found by the de-
termination can be expressed as the shown following
equation, eq. (III-60).

W(Fy, )=|ap, () ][? (I11-60)

Then, Schrédinger’s equation can be normalized with
an usage of ak(t) that has such physical menaing.
According to eq. (11I-42).

av(q,n
q =0
at

h
Hw(q,1) + — (I111-61)
2ni

Therefore, the relation is expressed by the following
equation, eq. (I11-62).

(111-62)

h da(t
DERCLINORELS: 2(1)

i T ug@= 0

After multipling #;(q) by the both sides of this equ-
ation, when the integral over the total region of g is
carried on, the following equation. eq. (III-63), is
obtained from eq. (III-56).

N ko da)t)
%ak(t)ful (DHup()dq + 5~ ;’t =0 (IlI-63)

Consequently, against the time differential of a;(1),
the following equation, eq. (I1I-64), is obtained,

day(t) 2wi
ot =~ ROk

(I11-64)

Here, Hl, k is defined as the shown following equation,
eq. (III-65).

Hy = fu/*(@) Bug(q)dq (111-65)

(30)
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As H is Hermitian, the relation is obtained as the fol-
lowing equation, eq. (IiI-66).

Hyg= H* (111-66)
Then, in the case that the energy is selected as the
eigenvalue against conservative system, those theories
are trying to be applied as follows. So, the relation is
obtained as the shown following equation, eq. (III-67).

Hl,k = Ek 8]- k (11-67)
Consequently, eq. (III-64) becomes the following
equation, eq. (I1I-68).

b (1)  2ni i
T + A al(t)El-O

(I11-68)
Then, the solution of this differential equation is shown
as the following equation, eq. (II1-69).

af(t)=c e CTIMEE (111-69)
Here, ¢; is constant. And eq. (III-56) becomes the
following equation, eq. (III-70).
-Cnifh)Ey t

vig,t) = %ckuk(q)e (I1I-70)

Here, cj, is given as the integral over the total domain
. s * +(27ri/h)Ekt
according to multipling uz*(q)e by the
both sides of this equation. The relation is shown as

the following equation, eq. (III-71).

+Quifh)Eyt (g, T)dq

e = fup*(@e (111-71)

Moreover, the probability W Ey,z) that the energy
Ep is determined becomes the following relation shown
as the following equation, eq. (III-72). The probability
does not relate to time.

W(Ey,t)= Iaktz =|cgl? (111-72).

Discussion and Conclusion

H—theorem in classical statistical mechanics: After

the hypothesis of a priori probability is recognized at

(3t)

the first step, Gibbs H—theorem is derived to corre-
spond to the irreversibility in natural phenomenon. A
fine-grained density is classified from a coarse-graind
density according to the consideration of Ehrenfest.
So, two densities are defined by the probability of
existence of the representative point in the phase space.
Moreover, normalization method is applied to them
effectively. When statistical mechanics treats coordi-
nate and momentum in the mechanical system, the
probability of existence of the representative point in
the finite region becomes the objective point. So,
coarse-grained density that is arithmetic mean of fine-
grained density in the finite region is defined. Succes-
sively, after the phase space is fractionated to the same
region, the phase space is integrated. So, the quantiy H
is defined by the usage of coarse-grained density. Then,
in the relation between H and time, H decreases with
time. Next, the state of the assembly at the initial time
t, is determined approximately. And the ensemble that
represents the determined result is composed. This
representative ensemble is distributed homogeneously to
the region of the phase space that corresponds well to
the determined result according to the hypothsis of a
priori probability. In statistical mechanics, fine-grained
densities equal to coarse-grained density in the region
that is finite magnitude for the approximate determina-
tion. Consequently, at the late time £, , the repressenta-
tive point existed in the initial region distributes homo-
geneously to many regions of the fractionated phase
space. In such changed region, the density at the
neighborhood of one moving representative point does
not change. So, the distribution density is equal to the
original value. Then, from the difference between H,
(H, is H at the time 1, ¢,) and H, (H, is H at the time
2,1,), H decreases with time.

Quantum mechanics: According to the principle of
uncertainty of Heisenberg, both position g; and its
conjugated momentum p; in a certain dynamical system
at a certain decided time cannot be determined exactly
at the same time. Both the energy of the free particle
and the time that its particle passes through a boundary
cannot be determined together at the same time.
Quantum mechanics is composed on the basis of the

principle. And quantum mechanics is treated as one

form of the so-called wave mechanics on the view
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point that is not relativistic.

(1) When the probability W that coordinate of a
certain dynamical system of freedom f exists at dif-
ferential range at each time is integrated over total
region, the relation is valid and becomes 1. Also, the
product ¥¥* of both probability amplitude ¥ of
complex function itself that cannot be determined
generally and conjugate complex function W¥*, the
integrated value of ¥¥* in a certain domain must be
finite.

(2) In quantum mechanics, linear Hamitian operator
corresponds to the physical quantities; coordinate g;,
momentum p;, and time #. And the operator corre-
sponds to the function F(q,p,t) that of coordinate,
momentum, and time is obtained by the substitution of
variable ¢q;, p;, t to the operator q j, p;, ¢ under the
condition of being the linear Hermitian. The mean
value of the physical quantity F(q,p,?) at the time t,
is obtained by integration over total coordinate region.
In classical mechanics, the decision of state decides
the value of physical quantity. In quantum mechanics,
the decision of ¥ decides the mean value of physical
quantity. Namely, & decides the quantum mechanical
state of system.

(3) The time-like change of the probability amplitude
is given by Schrddinger’s equation. H is linear Hermitian
operator cooresponds to Hamiltonian function in clas-
sical mechanics. And the important principle is obtained
by the theoretical derivation. It is principle of super-
position.

¥ decides the quantum mechanical state, and the
solution of Schrédinger’s equation gives ¥ at the late
time under the boundary condition that the state at the
initial time ¢, becomes ¥(q,?,).

Eigenvalue: On the basis of the concept relating to
quantum mechanics, the problem of mean value ob-
tained from the mechanical quantity F gq,p,t)is con-
sidered against eigenvalues.

¥(q,t,) at definite time 7, is expressed by u(q).
If F and F, are corresponding operator of F and a
certain numerical value respectively, one single-valued,
continuous finite function u(q) exists only to specific
value (eigenvalue, characteristic value) of ¥, When the
quantity F is determined exactly, the obtained value is

one of eigenvalue of corresponding operator.

And there are three conditions as follows; (a) eigen-
value is continuous (b) eigenvalue is uncontinuous (c)
eigenvalué is mixed property of continuity and uncon-
tinuity. Then, the property of eigenfunction in the case
of (b) is considered among three conditions. Because,
the continuous case is considered as the limit of the
uncontinuous case. Now, the two characteristic states
are considered, and are integrated over total region of
each variable. Under the consideration that IF is
Hermitian, the important conclusion is obtained as
follows; (d) eigenvalue is real number (e) eigenfunction
against different eigenvalue is orthogonal (f) if charac-
teristic state degerates and two and more eigenfunctions
correspond to the same eigenvalue, it is not always valid
that eigenfunction against different eigenvalue is ortho-
gonal. However, according to the principle of super-
position, new eigenfunction that is orthogonal each
other can be made by linear combination from g pieces
of different eigenfunction against one eigenvalue. And
the normalization method is applied in this case. Gene-
rally, the arbitary function f(g)that the finite [} f(g)|2dq
exists can be developed under normalized orthogonal
function system. So, probability amplitude ¥(q,t) is
developed with eigenfunction uk(q). And if coefficient
of development is 4z (t) in this development, ¥(q,t)
is equivalent to ak(t). Namely, . quantum mechanical
state is given by ak(t).

The exact determination of the physical quantity can
find certainly one of eigenvalue. As uk(q)is normalized
orthogonal function system, the mean value of nth

power of physical quantity is obtained by

Jw*(q.1)- F'w(q,1) = %ak*(t)ak(f)(f"k)n- As this

equation is valid against arbitary integer n, the probability

W(Fy, 1) of finding Fy, is obtained as W(Fy,1)=| az ().
On the other hand, Schrédinger’s equation is gene-

ralized. Like the description of paragraph of eigenvalue

. t
of gedanken experiment, the equation A, agi()

- 2—;"1’ 3, a3 (1) Hy ., is obtained against time differentia-
A ,

tion of g;(t). As H is Hermitian. So, Hgp = H*
Then, when energy is selected as eigenvalue against the
conservative system, HI, k= Eksj k is obtained. So,

9qy(t) 2w
the equation A is renewed as —al(_)+ T
t

—ay()E; = 0.
p 10 E;

(32)
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So, the solution of differential equation is a(t) =
cle” (Crifm)Eyt

v(g,t) = %ak(t) Ug(4) is renewed as W¥(q,t) =

%ckuk(q)e—(zm/h )Ekt.

Moreover, the probability W(Ep,t) that energy Ej is

determined can be expressed as W(Ep, 1) = |gp)* =
| e |*. 1t is not a function of time.

Summary

After the hypothesis of a priori probability is re-
cognized, Gibb’s H—theorem corresponding to the
ﬁreversibility in natural phonomenon is obtained. A
fine-grained density and a corase-grained density are
considered with some modifications. The quantity H is
defined by coarse-grained density. The Gibbs’ H—
theorem that decreases with time is derived by this
concept.

The concept in classical statistical mechanics is com-
pared with the concept in quantum statistical mechan-
ics. So, the basic concept in quantum mechanics is
considered on the viewpoint of wave mechanics.

‘The basic assumption for mechanical system in
quantum mechanics is considered. The probability,
probability amplitude, c&ﬁ'{plex function, conjugate
complex function, Hermitian operator and Hamilto-
nian function is classical mechanics are considered.

Next, eigenvalue is considered with the mean value of
mechanical quantity. Operator H against energy of
particle is considered. These concepts are derived into
the case that energy is selected as eigenvalue against

the conservative system.
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