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Introduction

The relation between chemical reaction and quantum
mechanics is reported on this paper according to the
space of this paper. Of course, the rest part that could
not be reported might be published on the next paper
successively. The concept in classical statistical mecha-
nics is applied to quantum statistical mechanics.

At first, the hypothsis of a priori probability in
quantum statistical mechanics is considered. In sta-
tistical mechanics, with an usage of the representative
ensemble that is the same composition to the objective
assembly, its mean behavior and property are studied.
The component of ensemble must be distributed cor-
responding to unsatisfactory knowledge. So, in quantum
statistical mechanics as similar as classical statistical
mechanics, the hypothesis of a priori probability is
necessary to be deduced as a postlate. The future
behavior is decided by Schrodinger’s equation. This
assumption hypothesis of a priori probability, is intro-
duced to quantum statistical mechanics. So, this proper
fact is recognized by the fact that the introduced con-
clusion agrees to the experience.

Density matrix: In quantum mechanics, the state of
mechanical system at a certain time is decided by
probability amplitude . The time-like change of ¥ is
decided by Schrodinger’s equation. So, in principle,
the change of state of mechanical system in quantum
mechanics can be pursured exactly at least like classical
mechanics. In classical mechanics, the state of ensemble
is indicated by the distribution density p of the repre-

sentative point in phase space. And, in quantum mecha-
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nics, density matrix plays a similar role to distribution
density. The concept in classical statistical mechanics is
compared with the concept in quantum statistical
mechanics. The former corresponds well to the latter.

H—theorem: The H—theorem is classical statistical
mechanics is compared with the H — quantum statistical
mechanics. H—theorem in quantum statistical mecha-
nics is proved with the hypothesis of a priori probabi-
lity. Fine-gained density and coarse-graind are con-
sidered separately. Density matrix of diagonal element
gives the probability that assembly exists at the state
k. In statistical mechanics, the case that the limitation
exists in accuracy of determination becomes the pro-
blem. So, coarse-garined density Py is defined. The
quantity H against ensemble is defined by the quantity
Pg. And, like the consideration in classical statistical
mechanics, the component of ensemble is distributed
homogenuously to the decided state according to the
hypothesis of a priori probability. H decreases with
time, and becomes minimum value. After these conside-
rations are developed, canonical ensemble expresses the
assembly that the statistical mean value of energy of
the representative ensemble is constant under being
at statistical equilibrium. In quantum statistical mecha-
nics, the exact circumstances in quantum statistical
mechanics is described with the density matrix. The
time-like change of density matrix is considered. With
the generalized Schrédinger’s equation, Liouville the-
orem is derived. The assembly represented by the
ensemble that distributes to various quantum states
without time-like change exists at statistical equilibrium.
Especially, the case that density matrix is a function of
energy is interested in statistical mechanics. So, micro-
canonjcal ensemble and canonical ensemble are con-

(35)



Keisuke HORITSU

sidered at various viewpoints.

Caninical ensemble is satisfactory for represent the
assembly that exists at constant temperature, and is
especially important to consider the relation between
statistical mechanics and thermodynamics.

Pauli’s principle: To explain anomalous Zeeman ef-
Uhlenbeck and
momentum, new physical quantity (spin) to electron.

fect, Goudsmit deduced position,
Spin cannot be found in classical mechanics. Spin is
characteristic angular momemtum and magnetic ef-
ficiency. Then, the multiplicity of atomic spectrum is
magnetic interaction between spin of electron and
orbital momentum. Also, spin is found in positron,
proton, neutron. Spin has characteristic momentum of
+%h/21r or -%h/Zw. In general case, Hamilton function
does not be affected by magnetic interaction of spin and
orbital momentum.

Pauli assumed that only one electron existed at the
same quantum state and could explain the periodic
{aw under restriction of rearrangement of electron in
atom. This pauli’s principle is developed to electron,
proton, chemical species composed with odd number of
elementary particle, and to photon, meson, chemical
species composed with even number of elementary
particle at the same time.

Experimental and Results, Gedanken Experiment

Hypothesis of a priori probability: In statistical
mechanics, the mean behavior and property are studied
with an usage of the suitable selected representative
ensemble that has the same composition to the assembly
in question. But, of course, to compose such represen-
tative ensemble, the component of the ensemble must
be distributed over the state that the insufficient know-
ledge relating to the state of the objective assembly
corresponds. Nevertheless, to distribute the component
of ensemble over the state that corresponds well similar-
ly such insufficient knowledge, the hypothesis of a pri-
ori probability must be derived newly as the postulate
in quantum statistical mechanics similarly in classical
statistical mechanics. And it is necessary to derive the
hypothesis of a priori probability in modern statistical
mechanics as the basic point.

Consider a certain physical quantity F of a certain
mechanical system. The eigenvalue and eigenfunction of
F are decided by eq. (IV-1) according to Fu(q) =

Feu(q)l).

Fuy (q)=Fyuy(q) av-1)
And the probability amplitude ¥ is represented by eq.
(IV-2) with the usage of this eigenfunction according to
wg,t) =S ap(DudV
k

¥(g,t)= %ak(t)uk(q) av-2)

If it is found that the value is one of eigenvalue F}
after the physical quantity F is determined exactly ata
certain time, namely if the system is at the state corre-
sponding to Fy, the following eq. (IV-3) is valid at the

time ¢,.

ag*(to)ay (1) =1 (Iv-3)

The property of the system at the time #, can be
decided by the method of quantum mechanics with the
usage of the above described equation, eq. (IV-3). More-
over, the future behavior of system is decided by

Schrédinger’s equation, eq. (IV-4).

o . i
t_2M s, OH) ,=- 2 qp(OH ,  (AV-4)
ot h n h

On the other hand, it is assumed as follows: the deter-
mination is approximate and the state of assembly is
well represented by any one of the contigous g pieces of
. Fy,

- Fg. In this case, the representative ensemble of the

eigenstate corresponding to each eigenvalue F, -

objective assembly must be composed with them by the
usage of the method of statistical mechanics. About the
representative ensemble of the assembly that the state is
known only such uncertainly, the distribution matrix
Pk, 1 is composed like the expression of the following
eq. (IV-3) against one k of any one of these g pieces of
eigenstate
Pr,1=ap*ag =Py 85 Iv-5)
The distribution matrix P, is composed like the ex-
pression of the following eq. (IV-6) against the other
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characteristic state.

P k1= 0 (IV-6)
Here, p, is constant. This assumption is called as the
hypothesis of a priori probability. Like the case of clas-
sical statistical mechanics, this assumption is derived as a
new postulate, And this validity is recognized by the
important point that the experience agrees well to the
conclusion derived from this assumption.

Density matrix: The state of the mechanical system at
a certain time ¢ is decided with the probability ampli-
tude W¥(q,t) in quantum mechanics. The mean values
of various physical quantities are calculated with
J¥*@,1)F (@ p. 1) ¥ (q,,1,)dq .

Here, q indicates the position coordinate q,, - ,qfand
the spin coordinate w exactly. But generally g is under-
stood as a significance of only the position coordinate
like the concept that is described at the paragraph relat-
ing to Pauli’s principle. Then, it is better to consider the
spin in only the case that the number of eigenstate be-
comes the subject. And the time-like change of ¥ is de-
cided by Schrodinger’s equation, HW¥ + 2—’;; ?Pt_ =0

Therefore, in quantum mechanics, the change of state of
the mechanical system is possible to be pursued exactly
in principle at least in analogy with the case of classical
mechanics. However, the method of statistical mecha-
nics must be applied to treat the assembly that the exact
change of the state cannot be pursued by one reason.
It is one reason that the determination is not exact.
Namely, the assembly in the ensemble is distributed
widely to the various possible states as the assembly
corresponds to the uncertain circumstances obtained
with these determinations. Moreover, the ensemble is
composed with an aggregation of the assembly that the
composition is same to the assembly in question. To
study the mean property and behavior of the assembly
in the ensemble is this object.

The circumstance of the ensemble in classical mecha-
nics is indicated by distribution density P of the re-
presentative point in phase space like the description at
the paragraphz) relating to distribution density, the
density matrix P ; defined by the following condition
in quantum mechanics plays a similar role to distribu-

tion density in classical mechanics.

As the consideration is indicated at the paragraph
relating to eigenvalue,s) in quantum mechanics, the
state is described variously by the selection of any
physical quantity as one eigenvalue. In statistical mecha-
nics, the case that energy is selected as eigenvalue be-
comes mainly the point in question. So, to have the
generality, it is assumed that arbitary physical quantity
F is selected as eigenvalue. If probability amplitude
W (q,t)is developed by the following eq. (IV-7) with the
usage of eigenvalue uk(q)of F, .density matrix Pk,l is

defined with the following eq. (IV-8).

w(q,t) = %ak(t)uk(q) av-7n

" 0a, V=5 O Gm  av-s

1

M

1
/’k,1=7v-CY

Namely, P k1 is arithmetic mean value of al("‘) *(t)-
ak("‘)(t) against the component a = 1, 2, -, N of the
ensemble. Here, ak(a)(t) indicates az(t) of component
a.

Probability Wy, that a certain assembly is at character-
istic state corresponding to eigenvalue F is given by the
following eq. (IV-9) according to W(Fk,t)=|ak(t)12 5),

Wi = a3 (D (1) av-9)

Then, the diagonal element Pk  of matrix Pk i defind

above is the probability that a certain assembly selected
from the ensemble at random exists at state k.

As Ww(g,t) is normalized in 1 and uk(q) is normalized
orthogonal function, the following relation indicated
with the following eq. (IV-10) is valid against each

assembly in the ensemble.
Sv*wdg = ﬂ?“l*“lz]é"k“k)dq

=kElal*akful*ukdq =Zagay =1 (IV-10)
, k

Consequently, the following eq. (IV-11) is valied with
regard to the quantity f k, % of matrix Py j defined

P =ZW,=Za*a =1 (Iv-11)
p k.k A k p k “k
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The probability that a certain assembly selected at
random from the ensemble exists at an arbitary state is
1. This result that the probability is 1 corresponds to
1=f- [pdq, - dpfz) in classical statistical mechanics.

And the mean value regarding the ensemble of physi-
cal quantity Pk,k against the assembly can be given by
this £ Kk If lots of determinations are averaged, the

value of F against a certain assembly is given by
%ak*aka according to [Ww*(q,t)F"w(q,t)dg =
Sap*Oa OF" ),

k

Therefore, the mean value F of this quantity against
the ensemble is expressed by the following eq. (IV-12).
F= EZI‘?@Fk = E/Dkka (IV-12)
k k7
This equation corresponds to F_=f-~ fFJ"dql dqu)
in classical statistical mechanics.

H-—theorem in quantum statistical mechanics: H—
theorem in quantum statistical mechanics is proved by
the usage of hypothesis of a priori probability as fol-
lows: At first, a distinction between fine-grained density
and coarse-grained density must be considered in detail.
As the diagonal element Pk,k =ak*ak of density matrix
P k1 gives the probability that the assembly selected at
random from the ensemble exists at state k, it is called
as fine-grained density. On the other hand, the case of
existence of limit in accuracy of determination comes
into quation in statistical mechanics. So, it is assumed as
follows: the contiguous g pieses of state 7, -, k, -, g
that has well similar property for it cannot be dis-

tingushed each other. Then, coarse-grained density is
defined by the following eq. (IV-13).

$p
I4

Py (Iv-13)
As this definition clarifies, Py is arithmetic mean value
of the probability that the assembly in the ensemble
exists at one of the contigous g pieces of state. And as
the probability exists at any state of all state is 1, the
following relation is valid as shown in the following eq.
(IV-14).

%Pk =1 (IV-14)

The quantity H against the ensemble according to the
quantity Py is defined by the following eq. (IV-15).
H= EPk log Py (Iv-15)
Here, the summation is made about all state k. Pk is
same against the contiguous g pieces of state k, con-
sequently log Py is same to them. And as it is expressed
asgPy = % Py j according to eq. (IV-13), also H is
expressed by the following eq. (IV-16).
H= %Pk,k log Py, (IV-16)
As taking various things into consideration in classical
statistical mechanics, when the quantity F of the
objective assembly is determined approximately at the
time ¢, and the representative ensemble of the assembly
is expressed, the component of the ensemble is dis-
tributed homogeneously over the contiguous g pieces of
state of F according to hypothesis of a priori probabi-
lity. Namely, the following relation is valid as shown in
the following eq. (IV-17).
Pick (1) = Py (to) av-17)
In consequence, if H at the initial time #, is expressed
by Hit,), and if H at the late time # is expressed by
H(t), the following relation is obtained as shown in the
following eq. (IV-18).

H(O)— H1) = 2 P 0:) o8 P 1) -

ZI)/’”(t)logPl(t) (IV-18)

Then, Klein’s relation equations) obtained from the
general solution of Schrédinger’s equation against the
isolated system is expressed as the following eq. (IV-19).

> Pk,k(to) log Pk,k(t‘)) 2 Z/ol’l(t)log Pl,l(t)
k ' (IV-19)

When eq. (IV-19) is substituted in eq. (IV-18), the
following relation is obtained as shown in the following
eq. (IV-20).
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H(ty) = HO2 B{Py (Olog P11 (0=F1 () log Py (D)
(IV-20)

And the following relation shown in the following eq.
(IV-21) is obtained from eq. (IV-11) and eq. (IV-14).

H(t) - HO 22 |y (0 log Fp(8) —
Py (1) log Pp(t) = Py, (0) +Pl(t)l(

Iv-21)

Then, as the following relation shown in the following
eq. (IV-22) is proved at the paragraph of H—theorem
of Gibbs3) in classical statistical mechanics,

Plog p— PlogP—p+P >0 (IV-22)
the following relation is obtained as shown in the
following eq. (IV-23).

H(t))-H({)>0 (IV-23)
That is to say, the quantity A decreases with time and
finally it becomes minimum value. In this case, the
relation, Pk,k = Py, is obtained from eq. (IV-23).
From eq. (IV-l9),/’k,k does not change with time and
the assembly exists at statistical equilibrium.

Even if the real assembly exists at “‘equilibrium state”,
the energy is lost or obtained by collision between the
chemical species and its surroundings, Therefore, there
are two kinds of consideration. The first consideration
is general consideration that the total energy is exactly
constant. The second consideration that the statistical
mean value E of energy of the representative ensemble
is regarded as being constant may be more natural than
the first consideration. And, if the condition that H in
this case becomes minimum is considered, the following
relation may be valid as follows. Now, if the energy is
selected as eigenvalue, the following relation is valid as
shown in the following eq. (IV-24).

lZ()PkE x = E =constant av-24)
In consequence, the variations equation is valid as
shown in the following eq. (IV-23).

%Ekéi Pp=0 (1V-25)

also, the following eq. (IV-26) is valid from eq. (IV-14).

Zp, -1 (IV-26)

Consequently, the following eq. (IV-27) is valid.

p 6Pk =0 (Iv-27)
k

Moreover, as H, H = % Py log Py, is minimum, the
following eq. (IV-28) is valid.

6H = E(long+ D 5Pk =0 (IV-28)

k
These three variations equations are combined by the
method of undermined multipliers of Lagrange, then the
following relation is obtained as shown in the following
eq. (IV-29).
o 1 - IV-29

%(lOng-g + eEk)6Pk—0 ( )
Here, -% and % are undetermined multipliers. In this
variations equation, as 8P is entirely arbitrary, the
coefficient must be zero. Namely, against each charac-
teristic state &k the following relation is valid as shown
in the following eq. (IV-30).

¢, Lp o 1V-30
log Py~ + 5 Ex =0 ( )
That is to say, the following relation is valid as shown in
the following eq. (IV-31).
v-Ep

Pp=e 9 (Iv-31)
So, the canonical ensemble is given. Thus, the canonical
ensemble can express the assembly that E is constant.
Also, the canonical ensemble can indicate that the
assembly exists at statistical equilibrium.

Statistical equilibrim: Liouville’s theorem in quantum
mechanics; Like the description of paragraph relating to
density matrix, the exact circumstance of the ensemble
is described by density matrix Pk, ; in quantum sta-

tistical mechanics. Then, it is considered that Pk,l
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occurs any change with time.

At first, time differential of al(t) is given by gene-
ralized Schrédinger’s equation, M 27” Zay(t)
Hlk 3) Namely, the following relatlon is vahd as shown
in the following eq. (IV-32).

da 2ni
.2 Za,(OH; , (IV-32)

ot

Therefore, the following relation is derived as follows;

WPl 5 —ne o 04 = 2@
St T W= 5 %k
,—%E(Hknal a —H*lnan (Zk)
2711

== E(Hkn nl = PienHn 1) (Iv-33)
Here, the last equation is obtained from Hlk H* 3)
This equation is called as Liouville theorem in quantum
mechanics. There is the assembly represented by the
ensemble that distributes to various quantum states,
as Pk,l does not change with time. It is said that the
assembly exists at statistical equilibrium, If /)k,l is the
function that is the exchangeable quantity — constant
of motion — to Hamiltonian operator, /’k ] is possible to
"exchange to H operator itself. 4 In consequence, it does
not change with time as the development can be under-
stood from eq. (IV-33). The case that Pk,l is the func-
tion of energy is especially interested to statistical
mechanics among others. If energy is selected as eigen-
value, the description of /’,k,l becomes simplest in the
above described case. Then, such two examples are tried
to show as follows;

(1) Microcanonical ensemble: In this ensemble, the
component distributes homogeneously to characteristic
state of energy that is between energy range E and
energy range £ + § E. Moreover, the component does not
distribute to other range. That is to say, the following
relations are shown in the following eq. (IV-34) and eq.
(IV-35) respectively.

Prei =Pobi (1V-34)
Here, in the case that E}, exists between energy range E
and energy range F + dF.

Next,
Pk,l =0 (IvV-35)
Here, in the case that Ey exists in the other energy
range.
(2) Canonical ensemble: In this ensemble, Pk,l is
given by the following eq. (IV-36).
v-Ep
[}

Pk,l =e 6k,l (IV-36)
Therefore, the following relation is derived as follows;
v-Ep
Pri=e © (IV-37)
And the following relation is derived from eq. (IV-11) as
shown in the following eq. (IV-38).
v-Ep
P =Ze O =1
KRk R

(IV-38)

Consequently, the relation between parameter of dis-
tribution ¢ and parameter distribution 6 is shown in
the following eq. (IV-39).

(Iv-39)

Then, canonical ensemble is just appropriate to repre-
sent the assembly existed at a constant temperature,
And canonical ensemble is important especially to con-
sider the relation between statistical mechanics and
thermodynamics.

Pauli’s principle: Spin: Uhlenbeck and Goudsmit6) in-
troduced position, momentum and a new physical
quantity, spin, into electron for the explanation of
the multiple property (multiplicity) that is determined
in atomic spectrum of alkali metal. As the example of
the phenomenon of multiplicity, two determinations are
shown as follows; Namely, 1) two D lines of natrium
(Na) appeares. 2) anomalous Zeeman effect appeares
when they are placed in magnetic field.

The spin could not be found in classical mechanics and
is characteristic angular momentum and magnetic ef-
ficiency. The multiplicity of atomic spectrum is given
as magnetic interaction between spin of electron and
orbital momentum. Successively, it is found that spin
positron, and

exists in other elementary particle,
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neutron. ]

The following assumption is necessary to explain the
experimental result. Namely, spin possesses a parallel
component Sy, Sy, 5z, to each axis X, ¥ 2 an(li each
characteristic angular momentum is which of + 2 h/2m
or - % h/2mw. Pauli” inducted operator S, Sy, Sz
that posseses the same property to angular momentum
of classical quantity against Sxr Sy 8z The different
point from angular momentum is the point that eigen-
value of these spin variables is only t%. For example,
Sy = % means that ei parallel characteristic angular
momentum to axis z is —2—h/21r.

The operator S, Sy, S, is unexchangeable each other,
but is changeable to operator of position. Therefore,
one component — s, is selected generally — and position
can be determined together. Consequently, ¥ of ele-
mentary particle is regarded as ¥(x, y, z, w, t). The
W¥(x, y, z, w, t) is the function of position x, y, z, that
is continuous variable and is the function of spin coordi-
nate w at the same time, and the operation of §, to ¥
is given by the following relation as shown in the follow-
ing eq. (IV-39) and eq. (IV-40) respectively.

1
SZ\I/(x,y,z,w=+%,t):+-;—‘l'(x,y,2,w=+—2‘, 1)
(IV-39)
S,v(x, y, z --1 t)=-l\ll(x 7 w=—2 t)
z V2, w = 2° 2 » V. 2, 2

(IV-40)

In the generality of cases, as Hamilton function is
little affected by the magnetic interaction of spin and
orbital momentum, the concept and the development of
consideration at the paragraphs relating to quantum
mechanicsz) and eigenvalue, characteristic value, are
valid without modification. However, as §, possesses
two eigenvalues of + %or —%, it is one specific result
that number of eigenfunction doubles.

After Pauli assumed that electron cannot exist only
one else at the same quantum state that includes the
spin, also, he can explain the periodic law of element
with limitation of arrangement of electron in atom.
This assumption is called as Pauli’s principle. At late
time, this assumption is extended further. So, a lot of
fact can be found as the following description. The
elementary particle — electron, positron, neutron —

that the spin is —é— cannot exist until only -one at the
same quantum state. Also, the chemical species that is
composed with odd number of elementary particle
cannot exist until only one at the same quantum state.
However, photon, meson, and chemical species that is
composed with even number of elementary particle can
exist until even many times at one state against the

former elementary particles.
Discussion and Conclusion

Hypothesis of a priori probability: The hypothesis of a
priori probability is introduced to modern quantum
statistical mechanics similary to classical statistical
mechanics as one postulate. The recognization of
validity of introduction is placed on the point that the
conclusion derived agrees well to the experience. The
result produced from the experience is most valuable,
because the result is the established fact. However, it
must be considered that. there is its level at its experi-
ence. The concept and value of hypothesis of a priori
probability in classical statistical mechanics are com-
pared with the concept and value of hypothesis of a
priori probability in modern quantum statistical
mechanics.

Density matrix: The circumstance of the ensemble is
represented by distribution density of the representative
point in the phase space in classical mechanics. Density
matrix in quantum mechanics fills the similar role of
distribution density in classical mechanics.

The concept of the ensemble in classical mechanics is
compared with the concept of the ensemble in quantum
mechanics. Also, as the ensemble is composed with the
assembly, the summation of the behavior of assembly
represents the behavior of ensemble. Moreover, as the
assembly is composed with the representative point, the
summation of the behavior of representative point
represents the behavior of assembly.

H —theorem: H —theorem considered in classical
statistical mechanics is considered similarly in quantum
statistical ~mechanics. H —theorem in quantum
mechanics is considered on the base of hypothesis of a
priori probability. The probability that the assembly
exists at one state at random is given by the diagonal
element of density matrix. Namely, it is called as coarse-

grained density. Generally, one problem in statistical
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mechanics is the case of limitation of accuracy of
determination. The coarse-grained density is arithemetic
mean value of the probability that the assembly in the
ensemble exists at one state of the contiguous states.
As the probability that exists at any state of all state is
normalized, the quantity H against the ensemble is de-
fined. The concept is developed similarly in classical
statistical mechanics. So, Klein relation equation is
derived from the general solution of Schrédinger equa-
tion against the isolated system.

As the explanation in classical statistical mechanics,
the quantity H decreases with time. And it becomes
minimum at last. So, density matrix is unchangeable
with time. And the assembly exists at statistical equilib-
rium.

However, the real assembly that exists at equilibrium
state lost or obtained the energy as the chemical species
collides with the surroundings. So, there are two kinds
of understanding as follows; the first one: the statistical
mean value of energy of the representative ensemble is
constant. The second one: the total energy is exactly
constant. In comparison of the both understanding, the
regarding as the second one is more natural than the
first one. Then, consider the condition that the quantity
H becomes minimum. So, energy is selected as eigen-
value. And, according to the method of undetermined
multipliers of Lagrange, after three variations equations
are combined, the coarse-grained density against each
characteristic state is obtained. Namely, the ensemble is
given as a canonical ensemble. Thus, canonical ensemble
represents the assembly that exists at statistical equilib-
rium under the constant mean energy.

Statistical equilibrium: the treatment of the represen-
tative point in classical statistical mechanics is compared
with the treatment of the representative point in
quantum statistical mechanics. The concept of the dis-
tribution density in classical statistical mechanics is
compared with the concept of the density matrix in
quantum statistical mechanics.

The exact circumstance of the ensemble is indicated
by density matrix. So, Liouvill’s theorem is classical
statistical mechanics. The statistical equilibrium of the
assembly is considred in the both mechanics. Then,
microcanonical ensemble and canonical ensemble are
explained on the back ground of consideration about

(42)

the relation between both statistical mechanics and
thermodynamics.

Pauli’s principle: A new physical quantity that cannot
be found in classical mechanics is introduced to modern
quantum mechanics. The spin that is characteristic
angular momentum and magnetic efficiency is con-
sidered as a new physical quantity. And the spin is
proved in positron, proton, and neutron, but it has a
characteristic angular momentum of + %h/Z-n or
- %h/er and has the parallel component with axis.
The validity of spin is held by the assumptions of
characteristic angular momentum and parallel com-
ponent with axis.

Some new phenomena are discovered in the field of
physics. However, the result appeared in the experi-
mental condition that can be changed mainly by arti-
ficial method becomes the objective problem. Namely,
the experimental result is classified from the result of
natural phenomenon, and is studied successively. But,
some problems that could not be treated by classical
mechanics appeared with the progress of study year by
year. So, to solute the problem, the method of quantum
mechanics is applied with new concept.

Pauli inducted this operator that possesses similar
property to classical quantity against parallel com-
ponent to axis. The specific point that spin variable of
eigenvalue is only 1% is different from angular momen-
tum. This operator is unexchangeable each other, but
is exchangeable to the operator of position. So, ¥ of
elementary particle is regarded as the function of both
postition of continuous variable and spin coordinate.
Generally, Hamilton function does not be affected
almost by magnetic interaction of both spin and orbital
momentum. As one component of spin s, possesses two
eigenvalues, +—% or - 1 , eigenfuction doubles.

Pauli assumed that only one electron exists at the
same quantum state. This assumption is applied to the
electron, proton, neutron, or the chemical species

composed with odd number of elementary particle.
Summary

The concept in classical statistical mechanics is com-
pared and considered with the concept in quantum
statistical mechanics.

Hypothesis of a priori probability: In statistical
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mechanics, by using the representative ensemble that is
the same composition to the assembly in question, its
mean behavior and property are studied. And the
component of ensemble has to be distributed cor-
responding to unsatisfactory knowledge. The hypothesis
of a priori probability is necessary to be deduced as a
postulate, and it in classical statistical mechanics is con-
sidered in comparison with quantum statistical mechan-
ics. The validity of introduction of the assumption,
hypothesis, is proved by the agreement between the
conclusion derived and the experience.

Density matrix: In quantum mechanics, the state of
mechanical system at a certain time is decided by
probability amplitude, and can be pursured at least
like classical mechanics. Density matrix in quantum
mechanics plays a similar role to distribution density
in classical mechanics. The concept in quantum statis-
tical mechanics corresponds well to the concept in
classical statistical mechanics.

H — Theorem: H —theorem in quantum statistical
mechanics is proved with the hypothesis of a priori
probability. Fine-grained density and coarse-grained
density are considered separately. And, the component
of ensemble is distributed homogenuously to the state
decided by the hypothesis. Canonical ensemble ex-
presses assembly that statistical mean value of energy
is constant under existence of statistical equilibrium.

Statistical equilibrium: The exact circumstance in
quantum statistical mechanics is described with density
matrix. The time-like change of density matrix is con-
sidered. And Liouville theorem is derived. The case that
the density matrix is a function of energy is interested
in statistical mechanics. Microcanonical ensemble and

canonical ensemble are considered. So, canonical en-
semble is satisfactory for represent the assembly existed
at constant temperature, and it is important to consider
the relation between statistical mechanics and thermo-
dynamics.

Pauli’s principle: Uhlenbeck and Goudsmit deduced
position, momentum, and new physical quantity (spin)
to electron. Spin cannot be found in classical mechanics.
Spin is found in positron, proton, and neutron. Spin
posesses three components that characteristic angular
mementum is + % h/2w or - % h/2m. Pauli assumed that

only one electron exists at the same quantum state.

(43)

This principle is developed to electron, proton, neutron,
chemical species composed with odd number of ele-
mentary particle, and photon, meson, chemical species

composed with even number of elementary particle.
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